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T R A N S P O R T  O F  A H I G H - C U R R E N T  R E L A T I V I S T I C  

E L E C T R O N  B E A M  BY M A G N E T I C  M U L T I P O L E S  

A. I. Borodich and I. A. Volkov UDC 539.121.8; 539.9.072 

With the aid o1' moments  o f  the distribution function a system of  differential equations is obtained to describe 

the dynamics o f  a Gaussian high-current electron beam in magnetic fields with quadrupole and octupole 

symmetries. Results of  its numerical solution are reported. 

Introduction. The method of moments makes it possible to describe, in analytical form, the dynamics of a 

high--current relativistic electron beam (HCREB) in external electromagnetic fields regardless of the form of the 

particle distribution function provided that the acting forces are linear [ 1, 2 ]. In this case, an infinite chain of the 

momental equations can be closed by using the conservation law of root-mean-square beam emittance as a 

consequence of the Liouville theorem being already valid for the second-order moments. Nonlinearities of the 

external field and the space charge field cause an increase in emittance. Use of the method of averages in the case 

of a small statistical nonlinearity allows a one-dimensional systems to be analyzed [3]. Below we consider 

nonlinearities of the 3rd degree owing to which the motions in the x- and y-directions turn to be coupled. Allowance 

for the quadrupole and octupole symmetries of external magnetic fields and properties of the two-dimensional 

Gaussian distribution allows the chain of equations to be closed with accuracy to squares of the nonlinear terms by 

adding nine linear differential equations for the fourth moments to the equations for the second moments. 

Momental Equations. We will consider a relativistic beam of electrons with charge e and mass m moving 

along the z-axis with velocity v 0 in magnetic fields with quadrupole and octupole components. For instance, 

transportation of charged beams by multiplets of quadrupole and octupole lenses: the former are used for beam 

focusing; the latter for correction of spherical aberration. Another example is transport in quadrupole channels with 

allowance for the edge effects of lenses due to the nonlinear octupole component of a field. A beam is considered 

to be a high-current  one but its current I does not exceed IA - [~/c3/e, where y = l /~f i - -S-~,  fl2c2 = 

(jc2 + ~2 + ~2). From the condition I << I A it follows that the length of betatron oscillations of electrons is consid- 

erably larger than the beam dimension; therefore, particle motions in the longitudinal and transverse directions 

are decoupled [4 ]. Since for x' = Jc/~ and y' = j,/~ (the dot designates the derivative with respect to t) I x'l << 1 

and I y'l << 1 are valid, then in a linear approximation for small terms x' and y' we have v -- k = v0 for the velocity 

of an arbitrary particle of the beam. It is assumed that in cross-section the beam form is nearly elliptical, i.e., 

distortions of the elliptical lines of a constant level of charge density due to nonlinearities of the intrinsic and 

external fields are effects of second-order smallness. 

Using the initial and central moments of the distribution function [1 ], we write equations for the time 

variation of the coordinates of the mass center of the beam ~ and y and its lateral dimension ~'= (xX) t~ and ~'= 
(-y2)t/2 as follows: 

- x + ymy = + " (1) 

X X + X X  = • 1 x/T~ 2 2 P x  + x + ~ X  , 
), m ym ym 
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. . . .  21 --2 1 ySeld  1 yF~eam (2) 
Y Y + Y Y -  2 p y + - -  + - - y  ; 

7 m y m  ?m 

. o,o .Cm 8o,0 )Cm 
7 m Px = 2ym x r x + 2 y m x  , y m py  = 2ym ~ + 2?m , (3) 

where Px = ymJ~, py = ?m~ and Px = ( 1 / y 2 m  2)P 2, Py = ( l / y  2m2)p 2. 

Note that expressions (3) can be also obtained from the equations for the envelopes if for the root-mean- 
2 2 2 _ xp2 and ey square emittances e x = x Px 2 = y~p2 _ yp2 the laws of their variation are written in the form: 

= 1 
e x = l ( z 2 " i C F x - Z Z x F x ) ,  ex ~y ~y ( 72 ~ x  -- Y'Y"YFy ) �9 

Using the expressions for the vector potential components AneJd(x, y, z) of the magnetic quadrupole and 
octupole and considering that ~o field = 0, we can write the components of the focusing magnetic field in the form: 

Bx = gqU (z) y + goc (z) (3, 3 - 3x2y), By = gqU (z) x + goc (z) (3y2x - x3),  

B z = O ,  

where gqU(z), g~ are  the quadrupole and octupole gradients, respectively. 

Then the components of the force acting on an arbitrary particle of the beam from the side of the external 
field are: 

~ eld = _ evo [gqU (z) x + goc (z) (3y2x -- x3)] 

ield = + evo [gqu (z) y -- goc (z) (3x2y -- y3) l .  

(4) 

A procedure for calculating the potentials of the field of a space charge is discussed in the next paragraph; 

the transverse components of the force are as follows: 

F•X a m  ~ 
2 (C1 (z) x + C 2 (z) x 3 + C 3 (z) yZx) ,  

Y 

yF~ earn = ~ e  2 (C 4 (z) x + C 5 (z) x 3 + C 6 (z) x2y). 
Y 

(5) 

With regard to expressions (4) and (5) the equations fc;  ~', ~, Px, Py can be written as 

:~ - ~- - evo - 2 oc _4  x2y 2 e ~ 2 C2 .~ 4 x2y2 
x x + x x = P x - - - ( g q U x  - g  x + 3 :  ) + T ( C 1  + + C  a ) ,  (6) 

ym ? m 

~ . -  :-.~. evo ( oc - 4  x2y 2 ) e ~..2 .-.4 C6 x 2 Y Y + Y Y = P y + - - g q U ~ . 2 + g  Y _3gOC +__~__(C 4 + C s Y  + y 2 ) ,  
ym y m 

(7) 

evo oc ~3 e �9 .~3 �9 
jb x =  -- 2 ( g q U ~ - ~ _ g  x x '+  3 : x y 2 j c )  + 2 ~ ( C  1 x 'x '+  C 2 x '+  C 3xy2jr  

ym y m 
(8) 
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= ~ oc -3  e -3  ~ + C6 yx2i,., by + 2 evO (gqU ~-.ff+ g Y i f _  3gOC yx2y ) + 2 ~ (C 4 y"y"+ C 5 y ) 
? m  7' m 

With regard to expressions (4) and (5) the expressions for 2, y acquire the form 

(9) 

D 

�9 -" evo oc "-] e x3 C3 xY 2 ) x =  - - - - ( g q U ~ - - g  x + 3g ~ 2)  + ~ (C l ~ +  C 2 + , (10) 
3/m 3/ m 

"" evo oc - ~  ~ e - -  
Y = - -  ( g q U y _ g  Y _ 3 g O C x 2 y ) + ~ ( C 4 Y + C 5 y 3  + C 6 x 2 y ) .  (11) 

ym y m 

W e  n o w  in troduce  a n e w  i n d e p e n d e n t  variable  r: dr = ( v o / S ) d t ,  d r  = d z / S ,  r E [to; r 0 + P / S  ], w h e r e  S 

is a per iod  of  the  focus ing  s tructure  a n d P  is the__transport path length,  and rewrite  Eqs.  ( 6 ) - ( 1 1 )  (a dot  n o w  d e n o t e s  

the  derivat ive  w i th  respec t  to r; P x  = j:2, py = j,2): 

�9 " --2 oc--4 x2y2 e S _ _ _ ~  2 ~.2 ' 2 2  (6a) 
x x + x x = Px -- 3/mflc es'-'~2 (gqU x -- g x + 3g ~ ) + 3/3mr 2c2 (C 1 + C2 ~.4 + C3 x y ) ,  

. . . .  oc -4  e S______~ z -4  ~ (7a) 
Y Y + Y Y = PY + 3/m[3c eS2 (gqU ~2 + g Y _ 3gOC x2y2 ) + 3/3mfl 2c2 (C4372 + Csy + C6x2Y2 ) ,  

oc - 3  e S____~ 2 
Px = - 23/mflc eS2 (gqU .~:~ _ g x ~ + 3g~162 ) + 23/3mfl2c2 (ClX'X" + C2 ~'3 ~ + C3xy2~ ) ,  (8a) 

oc -3  eS_l__~ 2 --3 ~.+ C6YxXj~ , (9a) 
~by = + 2 ymflc eS2 (gqU ~ . ~ _  g Y ~ _  3gOCyx29 ) + 2 ),3mfl2c2 (Cdy'+ Csy ) 

�9 " eS 2 oc -'3 ~ eS___~ 2 - -  2 
x = -- ~3/mflc (gqU ~ _ g x + 3g ~ xy 2 ) + 3/3m,82c 2 (CI~ + C2x 3 + C3xY ) ,  (lOa) 

"" oc --3 e S ~  ~ (1 la) 
Y = + ymflc eS2 (gqU y + g Y _ 3gOC x2---~ ) + 3/3rr~ 2c2 (C,~ + C5Y + C6x2y ) .  

This system .0f equations is incomplete, since it constitutes undetermined moments of the third xy 2, yx 2, x 3, y3 and 
fourth order  x2y 2, x~,jp, yZx~. 

For actual transport channels for high-current beams the quadratic terms of the transverse coordinates in 
Eqs. (6a)-(9a) are considerably larger than the terms of the fourth order. Then the system of the equations for the 
fourth moments turns to be closed with an accuracy to terms of the second-order infinitesimal. Using the following 
designations: 

2 �9 2 �9 2.2 22  
b I = x 39;, b 2 = y x x ,  b 3 = x y ,b 4 = Jr y ,b 5 = .~ 2y~, b6 = j~ 2x.~, 

22  
b 7 = x y  , b 8 = x~ry,  b 9 = Jc2"y2 

it can be written in the form: 

775 



b I = b 3 + ayb 7 + 2b 8 , 

b 2 = b 4 + axb 7 + 2b s ,  

b3 = 2aybl + 266, 

5 4 = 2axb 2 + 2b  5 , 

/~5 = ayb4 + 2axb8 + b9, 

5 6 =  axb 3 + 2ayb 8 + b 9, 

57 = 2b I + 2b 2 , 

b8 = axbl + ayb2 + [75 + b6, 

5 9 = 2axb 5 + 2ayb 6 , 

(12) 

where 

ax(Z) = - 7'mflceS---~-2 gqU (z) +),3~fl~c - - ' ' - ~ C l  (z); ay (z) = yml3ceS---~-2 gqU (z) +),3~fl;c - - - - - ~ C 4  (z)" 

To determine the unknown third moments in Eqs. (6a)-(1 la) ,  we assume that along the entire transport 

path the charge density in an elliptical cross-section of the beam has a Gaussian distribution with t ime-dependent 

parameters (the model of quasi-equilibrium plasma [51, self-similar beams [6 ], self-similar solutions of the kinetic 

equation [7 ]). Then the distribution function of the transverse coordinates in a focusing channel is of the form 

Vr]--s~l  exp 2 (1 1 [ ( X - - X ) ! )  L O'x (Y-  Y)2 2/* ( x -  X) (Y- -Y) ] ]  (13) g(x, y) = 2~crx% /,2. 1 7 .  + z - Crx Crxcry 

Here, the mean values of ~, Y, dispersion Ox, cry, and the correlation coefficient/z, which reflects the degree of the 
linear dependence between x and y, are functions of z. 

For a two-dimensional normal distribution the central moment of any odd order can be expressed in terms 

of the corresponding moments of the second order, i.e., in terms of the dispersion of random values and the 
coefficient of correlation between them: 

(x - ~ )2  (y _ y )  = 0 ,  

( x - ~ )  ( y - 7 )  2 = 0 ,  

(x - ~ )a  = 0 ,  

( y -  7 ) 3  = 0 ,  

( x _ ~ ) 2 ( y _ 7 ) 2  2 2  ~ 2 2 2  
= Crxay + 4u crxay. 

With this taken into consideration, we express the initial moments of the 3rd order in terms of the central 

moments of the 3rd order and determine Ty: 

3 3~x 2 y2 3 x = 2~3 3 - , y = 3 7  - 2 7  , 

- -  m 

2 2 2 -  x y = - 2 ~  Y + 2 ~ + x  y ,  2 2 _ (14) y x=  - 272~ + 27-~+ y x ,  

--  x y  - x  y + 2 x 2 y  2 
xy = 2 " 

The relations for the dispersions and the correlation coefficient are as follows: 

2 2 --2 2 2 _2 
= x  - x  , Cry=y - y  , - ~uCr-cry=xyxy" (15) Crx 

Thus,  for determination of the root-mean-square dimensions of the beam Eqs. (6a)-(9a) are solved is 

combination with system (12). Knowing the expressions for ~', y-and xZy 2, the coordinates of the center of mass of 

the beam can be found as a solution of Eqs. (10a), ( l l a )  with the use of relations (14). 

Calculation of the Potentials of the Space-Charge Field. The potentials of the space-charge field on each 

section element of the transport path l (the l order of the Debye radius, which is determined by the transverse 

temperature of the beam and particle density being functions of z) depend only on the transverse coordinates, the 

parameters of the distribution function of which do not change along I [5 ]. 
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To calculate the transverse components of the space charge field of the beam at length l, we rewrite (13) 
in terms of new variables X = x - -s Y = (y - y-)ax/cry: 

1 
g (X, Y) = exp 

Z~a~x 
2 2 (1 ,u z) ,r~ 

We now write a solution of the P oi s son  equation for a G a u s s i a n  distribution of charge density in terms of 

the Green function (for a circle) of the Dirichlet internal boundary-value problem G ( X o ,  Y0, X, Y): 

beam I 
(;Co, r ' o ) =  _ _  

eOvo 
f f d X d  Y g (X ,  Y) x 

+ (x + r5  (;o + 6 + ;,o) + 
1 R 2 - (X2 + y2 + X~ 0 + - ( Y -  y0)2 (16) 

x - -  In 
( X -  X0) 2 + ( Y -  Y0) 2 4at 

where e o is the vacuum dielectric permittivity; R ,= 3a x. 

The two-dimensional integral (16) cannot be calculated analytically. It must be calculated numerically at 

each i-th node (Xio, ~0) of a space grid imposed on the beam cross-section by the Gauss method for hyperrectangles. 

Integration is over the region [-3crx; 3ax]X [-3~rx;3ax]. Here, according to the boundary conditions, ~o beam = 0 
beyond th i s  region. 

Knowing the potential values at different points of the beam cross-section, we determine its analytical 

dependence on the transverse coordinates by the least-squares method by approximating, as in [8 ], using polyno- 

mials of the fourth order with respect to x and y. Polynomial decomposition of the scalar potential seems to be 

reasonable,  since we can choose, as a geometric model of the beam, an elliptical cylinder (the longitudinal 

dimension of the beam is far greater than the radial one and the cross-section is assumed to be elliptical). 

With regard for elliptical Symmetry we have 

beam 2 2 
~o (x, y, z) = C01 (z) x 2 + C02 (z) y2 + C40 (z) x 4 + C04 (z) y4 + C22 (z) x y . (17) 

Here, the decomposition factors are constant along l and are recalculated for each step. 
In a quasistationary approximation [9 J, Ax team = Ay beam = 0, Az beam = (vO/CZ)7"~am; therefore, the force 

components of the space charge with allowance for the magnetic field of the beam have the form of (5). A comparison 

of expressions (17) and (5) shows that Cl = -C20, C2 = -C40, C4 -- -C02, C5 = -C04, C3 = C6 = -C22. 
Solution of the System of Momental Equations. Expression (12) represents a normal linear system of 

ordinary differential equations. According to the Picard theorem, a fundamental system of solutions exists if the 

coefficients of (12) are continuous functions. If the gradients of the quadrupole and octupole lenses are prescribed 

as piecewise continuous functions [9 ] along the entire transport path and the values of the coefficients Ci (i = 1, 

. . . .  6) are determined for the given section element l, system (12) becomes autonomous and a fundamental  system 

of solutions can be found analytically. With knowledge of ax  and ay for the given l, a solution of system (12) can 

be written in general form in terms of its eigenvalues and eigenvectors, which are as follows 

2r ;, 

- 2 f ~ a  x ,  

O, {O, O, - ay, - ax, O, O, l ,  O, axay}  , 

o, Ox,- o, l, o , -  

fo, ' 'o,  1  O,l} 
ay X / a x a x ay ~I ax  axay 
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2 ~ a x ,  {0 ' 1 1 1 O, 1 __1__1 0,1} 
% C a  x' a; % d-~a~' ax% 

- 2 x/ ay - 2 ~ a x ,  { -  if' ( -  12ax - 4ay + a 2) a ,  ( -  4a  x -  12ay+a 2) ( -  4 %  - 4ay + a 2) 
1 6 %  ( %  - ay) ' 16o.,) (a x - ay) ' 8a x ' 

(_.- 4% - 4(2), + a~) _ a_ l (- 12a x - 4a), + a~) a I (- 4a x - 12a~, + a 2) 
Say ' 16 ( %  - ay) ' 16 ( %  - ay) 

1 1 1 2} ( -  4ax- 4aT + a2t) 1 , -  - + a 1 
8axay , -~ a x -~ ay -~ , 

- 2 ~/ ay + 2 %/-~ax, { a2 ( -  12ax - 4ay + a 2) a 2 ( - 4 a  x -  1 2 a y + a ~  ( -  4a x - 4ay + a2 2) 
- - 16a x (a x - ay) ' 16ay (a x - o3,) ' 8a x ' 

( -  4 %  - 4a~ + a 2) _ a t , ( -  12a x - 4ay + a 2) a 2 ( - 4 a  x -  12a.y+a 2) 
Say ' 16 ( %  - ay) ' 16 (a x - ay) 

( - 4 a  x - 4 a y + a  2) 1 1 1 ~} 
8a~y ' l' --~ a x - ~  % +-g a ' 

- 2 ~[ ay - 2 vr-~ax, { -  -% ( -  l zax  - 4ay + a~) a 3 ( - 4 a  x -  12ay+a~) ( -  4a x - 4ay + a~) 
16a x (a x - ay) ' 16ay (a x - ay) ' 8a x ' 

( -  4a x -  4ay + a~) _ a 3 ( -  12a x - 4a~ + % )  a 3 ( - 4 a  x -  12av+a~) 
Say ' 16 (a x - ay) ' 16 (a x - ay) 

( - 4 a  x - 4 a y + % 2 )  1 1 1 2} 
8axay , 1, - -~ ax - -~ ay + g a 3 , 

2 ~ lay  + 2 " ~ a x ,  {--  a4 ( -  1 2 a x -  4ay + a24) a 4 ( - 4 a  x -  12ay+a24) (-- 4a x - 4ay + a4 2) 
16a x (a x -- ay) ' 16ay (a x -- ay) ' 8a x ' 

( -  4a x - 4ay + a 2) a 4 ( -  12a x -  4ay + a]) a 4 ( - 4 a  x -  12ay+a4)  
Say ' -- 16 (a x -- ay) ' 16 ( %  -- ay) 

( -  4a x -  4ay + a~) 1 1 1 2} 
8axay , l , - - - ~ a  x - - ~  a y - -  -~ a 4 , 

where  (21 -- - 2 ~ y y  - 2~f~x; (22= - 2 ~ y  + 2 v ~ x  , a 3 = 2 ~ y  - 2v~x;  (24 = - 2 ~ y  + 2v~x.  

Having determined the moments of the 4th order x2y 2, x2y~, y2x&, we solve Eqs. (6a)-(9a) simultaneously 
for determination of ~', ~. 

Solution of Eqs. (10a)-(lla) in combination with expresoions (14) for the 3rd-order moments xy 2, yx 2, 
x 3, y3 allows determination of 2, y. 

Equations (6a ) - ( l l a )  are nonlinear, and they can be solved by numerical methods, e.g. by the 
Runge-Kutta  4th-order method. From the considerations above it is clear that the integration step must not exceed 
1. 
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Fig. 1. Root-mean-square dimensions (a} and parameters-centroids (b) of the 

transported beam: 1) method of moments; 2) TRLIE program, x, y, x, y, z, 

m.  

As an example, we calculate the centroid parameters and root-mean-square dimensions of a beam 

transported in a focusing-defocusing (FD) channel representing a triplet of nonideal quadrupoles. The length of 

the transport path is equal to the period of the focusing system and is 1.25 m; the lengths of the triplet lenses are 
0.375, 0.5, and 0.375 m, respectively, the quadrupole gradient is gqU = 0.025 T/m, and the second derivative (with 

respect to z) of the quadrupole gradient is g" = 0.001 T/m 3. 
Using the expressions for the components of the vector potential A field(x, y, z) of a magnetic quadrupole 

with boundary fields [10], we can write the components of the focusing magnetic field with allowance for the 

nonlinear (octupole) component in the form 

. 3 1 2 
B x = g ( z )  y -  g (z) y - ~ g ( z )  x y ,  

= ~_~ " 3 1 " 

By g (z) x - g (z)  x - -4 g (z)  y 2 x ,  

B z = O .  

Equations (6a)- (11 a) retain their form with allowance for gOC (z) = ___ 1 / 12g'. 

Figure 1 shows plots of the variation of the root-mean-square and mean dimensions of the beam obtained 

by the method described above and the output data of the TRLIE program [11 ] (numerical simulation of the 

dynamics of high-current beams using Lie algebra as a tool). For the electron beam we have taken the following 

initial parameters: current I = 100 A, particle energy E = 1 MeV, ~'(0) = y'(0) -- 2.5 cm, ~'(0) = y(0) --- 0, and the 

dispersion of the transverse velocitites is 1% of the longitudinal velocity. As seen, the results of both methods are 

consistent with each other within an accuracy of 8 %. 
Conclusion. Thus, the presence of quadrupole and octupole symmetry of external magnetic field and the 

use of the properties of the Gaussian distribution of the transverse coordinates of a high-current relativistic beam 
of charged particles make it possible to descri~= analytically its dynamics in a transport channel with allowance for 

nonlinear effects. The calculation results agree with data obtained by alternative methods for coarse particles. 

The work was performed with financial support of the Fund for Fundamental Research of the Republic of 

Belarus (grant No. 94-41). 

N O T A T I O N  

IA, Alvena current; v 0, velocity of ordered motion of electrons; c, velocity of light in v a c u u m ;  /~4ieid, force 
of magnetic-focnsing element; / vbeam, force of space charge; gqU, quadrupole gradient; gOC, octupole gradient; FD- 

channel, transport channel assembled of alternating quadrupole lenses. 
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